15 research outputs found

    Structural basis for the enhanced activity of cyclic antimicrobial peptides:The case of BPC194

    Get PDF
    AbstractWe report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides

    Amidated and ibuprofen-conjugated kyotorphins promote neuronal rescue and memory recovery in cerebral hypoperfusion dementia model

    Get PDF
    Copyright © 2016 Sá Santos, Santos, Pinto, Ramu, Heras, Bardaji, Tavares and Castanho. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Chronic brain ischemia is a prominent risk factor for neurological dysfunction and progression for dementias, including Alzheimer's disease (AD). In rats, permanent bilateral common carotid artery occlusion (2VO) causes a progressive neurodegeneration in the hippocampus, learning deficits and memory loss as it occurs in AD. Kyotorphin (KTP) is an endogenous antinociceptive dipeptide whose role as neuromodulator/neuroprotector has been suggested. Recently, we designed two analgesic KTP-derivatives, KTP-amide (KTP-NH2) and KTP-NH2 linked to ibuprofen (IbKTP-NH2) to improve KTP brain targeting. This study investigated the effects of KTP-derivatives on cognitive/behavioral functions (motor/spatial memory/nociception) and hippocampal pathology of female rats in chronic cerebral hypoperfusion (2VO-rat model). 2VO-animals were treated with KTP-NH2 or IbKTP-NH2 for 7 days at weeks 2 and 5 post-surgery. After behavioral testing (week 6), coronal sections of hippocampus were H&E-stained or immunolabeled for the cellular markers GFAP (astrocytes) and NFL (neurons). Our findings show that KTP-derivatives, mainly IbKTP-NH2, enhanced cognitive impairment of 2VO-animals and prevented neuronal damage in hippocampal CA1 subfield, suggesting their potential usefulness for the treatment of dementia.Funding was provided by the Portuguese Agency Fundação para a Ciência e a Tecnologia SFRH/BPD/79542/2011 fellowship)info:eu-repo/semantics/publishedVersio

    Endothelium-mediated action of analogues of the endogenous neuropeptide kyotorphin (tyrosil-arginine) : mechanistic insights from permeation and effects on microcirculation

    Get PDF
    © 2016 American Chemical SocietyKyotorphin (KTP) is an endogenous peptide with analgesic properties when administered into the central nervous system (CNS). Its amidated form (l-Tyr-l-Arg-NH2; KTP-NH2) has improved analgesic efficacy after systemic administration, suggesting blood-brain barrier (BBB) crossing. KTP-NH2 also has anti-inflammatory action impacting on microcirculation. In this work, selected derivatives of KTP-NH2 were synthesized to improve lipophilicity and resistance to enzymatic degradation while introducing only minor changes in the chemical structure: N-terminal methylation and/or use of d amino acid residues. Intravital microscopy data show that KTP-NH2 having a d-Tyr residue, KTP-NH2-DL, efficiently decreases the number of leukocyte rolling in a murine model of inflammation induced by bacterial lipopolysaccharide (LPS): down to 46% after 30 min with 96 μM KTP-NH2-DL. The same molecule has lower ability to permeate membranes (relative permeability of 0.38) and no significant activity in a behavioral test which evaluates thermal nociception (hot-plate test). On the contrary, methylated isomers at 96 μM increase leukocyte rolling up to nearly 5-fold after 30 min, suggesting a proinflammatory activity. They have maximal ability to permeate membranes (relative permeability of 0.8) and induce long-lasting antinociception.FCT-MCTES is acknowledged for PhD fellowship SFRH/BD/52225/2013 to J.P. Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) is acknowledged for funding: call H2020-MSCA-RISE-2014, Grant agreement 644167, 2015-2019.info:eu-repo/semantics/publishedVersio

    The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer’s Disease Pathophysiology

    Get PDF
    Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer’s disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid β peptide (Aβ). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aβ administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aβ-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aβ-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aβ oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aβ caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aβ-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.publishersversionpublishe

    KAP Degradation by Calpain Is Associated with CK2 Phosphorylation and Provides a Novel Mechanism for Cyclosporine A-Induced Proximal Tubule Injury

    Get PDF
    The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA

    The incorporation of sugar moieties to neuropeptides: comparative study of different methods

    No full text
    By using both β-N-glycosylation and β-O-glycosylation procedures, different methods for the incorporation of glucose moieties to proline, hydroxyproline or glutamic acid containing protected neuropeptides have been examined. As far as glycosylation of Glu and Hyp containing fragments is concerned, the Incorporation of either γ-β-N-glucosylated glutamic acid or 4-β-O-glucosylated hydroxyproline to the rest of the peptide have been chosen. However, in the case of C-termlnal proline containing peptide fragments, direct β-N-glucosylation of the full peptide has been preferred. Acetyl protecting groups on the sugar moiety led to better yields than the bulkier benzyl groups.This investigation was part of the Research Project n 603839 of the Spanish comision Asesora de Investigacion Cientifica y Tecnica (C.A. I.C. Y. T. )Peer reviewe

    Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    No full text
    © 2012 Elsevier Inc. All rights reservedAntimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) – KTP–NH2, IbKTP, IbKTP–NH2 – were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.Fundação para a Ciência e Tecnologia (Portugal) is acknowledged for funding (SFRH/BD/42158/2007 fellowship to M.M.B.R. and SFRH/BD/39039/2007 fellowship to H.G.F.). Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is also acknowledged for funding and fellowship to V. G. R. (FP7-PEOPLE-2007-3-1-IAPP, Project 230654)

    Side-effects of analgesic kyotorphin derivatives : advantages over clinical opioid drugs

    No full text
    © Springer-Verlag 2013The adverse side-effects associated with opioid administration restrain their use as analgesic drugs and call for new solutions to treat pain. Two kyotorphin derivatives, kyotorphin-amide (KTP–NH2) and ibuprofen–KTP–NH2 (IbKTP–NH2) are promising alternatives to opioids: they trigger analgesia via an indirect opioid mechanism and are highly effective in several pain models following systemic delivery. In vivo side-effects of KTP–NH2 and IbKTP–NH2 are, however, unknown and were evaluated in the present study using male adult Wistar rats. For comparison purposes, morphine and tramadol, two clinically relevant opioids, were also studied. Results showed that KTP-derivatives do not cause constipation after systemic administration, in contrast to morphine. Also, no alterations were observed in blood pressure or in food and water intake, which were only affected by tramadol. A reduction in micturition was detected after KTP–NH2 or tramadol administrations. A moderate locomotion decline was detected after IbKTP–NH2-treatment. The side-effect profile of KTP–NH2 and IbKTP–NH2 support the existence of opioid-based mechanisms in their analgesic actions. The conjugation of a strong analgesic activity with the absence of the major side-effects associated to opioids highlights the potential of both KTP–NH2 and IbKTP–NH2 as advantageous alternatives over current opioids.Fundação para a Ciência e Tecnologia (Portugal) is acknowledged for funding: SFRH/BD/42158/2007 fellowship to M. Ribeiro and SFRH/BI/51213/2010 fellowship (for doctorate) to S. Sá Santos associated to Marie Curie IAPP. Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is also acknowledged for funding (FP7-PEOPLE-2007-3-1-IAPP. Project 230654). The authors acknowledge and appreciate the financial support received from Faculdade de Medicina da Universidade de Lisboa and Fundação Amadeu Dias, Portugal (Project No. 2010029
    corecore